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Intro, admin, etc

● Introductions
● Administration and other practical matters
● Course agenda, contents, purpose, and goals
● Machine set-up and materials



  

Python (and other languages)

● Python
● Comparisons with other languages
● Connections to other languages
● Versions of Python
● Why Python?  Also, when and why not Python.



  

Course Preview

● Lexical matters
● Built-in data types – numbers, strings, lists, 

dictionaries, files, etc.
● Statements – assignment, if:, for:, while:, etc
● Functions
● Classes and objects
● Other topics: list comprehensions, iterators, 

standard modules, etc
● And, ”practical” exercises everywhere



  

Lexical Matters

● Names
● Scope
● Keywords and operators
● Line structure
● Comments
● Statement structure
● Blocks and indentation
● Special names



  

Built-in datatypes

● Numbers
● Strings
● Lists and tuples
● Dictionaries
● Files
● None, booleans, sets, functions, methods, 

classes, modules, type objects, etc.



  

Objects and data types

● Mutability and immutability
● Objects have attributes.  Some attributes are 

methods.
● Use type(obj) and dir(obj)
● References and sharing.  Use id() and the is 

operator to check identity.



  

Numbers

● Integers
● Longs (really long)
● Floats
● Complex/imaginary
● Literal representations
● Operators
● Mixed arithmetic



  

Strings

● What are strings? A string is an immutable 
ordered sequence of characters.

● String literals – single quotes, double quotes, 
and triple quoting

● String operators
● String methods
● String Formatting



  

Lists and tuples

● Lists and tuples are sequences – ordered 
collections.

● Lists vs. tuples – mutable and immutable
● Literal representation of lists and tuples
● Operators
● Methods



  

Dictionaries

● What are dictionaries? – An unordered 
collection of key-value pairs.  A mapping from 
keys to values.

● Literal representation of dictionaries
● Operators for dictionaries
● Methods for dictionaries



  

Container summary

● Strings – ordered, characters, immutable

● Tuples – ordered, heterogeneous, immutable

● Lists – ordered, heterogeneous, mutable

● Dictionary – unordered, key/values,  mutable

● Set – unordered, heterogeneous, mutable, unique 
values



  

Files

● What is a file object?  A file object represents a 
file on the file system.  There are other file-like 
objects.

● Creating a file object – open() – name/path, 
mode (read, write, append)

● Using a file object – File methods: read, 
readlines, write, seek, etc.

● Iterating over the lines in a text file.



  

A few other data types

● The null type – None
● Boolean values – True and False
● Sets
● Functions and methods
● Classes and instances of classes
● Modules
● Additional builtin and defined types in the 

Python standard library



  

Introduction to Statements

● Statements are executed.
● Statements do not return a value.
● Compound statements have a header and 

contain one or more blocks.



  

Statements

● Simple statements -- assignment, print, import, 
break, continue, raise, ...

● Compound statements – if:, for:, while:, try:, 
with:, ...



  

Functions: Introduction

● Introduction to functions
● Why functions – task abstraction; application 

organization/structure.
● Execution model for functions
● Functions are first-class objects



  

Function definition

● Function block header
● Parameters – plain
● Parameters – default values
● Parameters – arg lists and keyword arguments 

(*args, **kwargs)
● Returning values from a function
● Scope – Bindings within a function.  Also, the 

global statement.



  

Using/calling functions

● Passing arguments – plain
● Passing arguments – keyword
● Using function return values
● Functions by name, functions by variable, 

functions in data structures
● Unpacking return values
● Unrolling collections in a function call



  

Object-oriented programming

● Why OOP? -- object abstraction; modeling 
objects in the real world; reuse.

● Organization – classes are another way to 
structure and organize your code.

● Encapsulation
● Data(and method) hiding
● Inheritance
● Polymorphism – duck typing



  

Defining classes

● Class block header: name and superclass
● Adding methods
● The constructor: __init__
● Creating instance/member variables
● Class data members
● Class methods
● Properties



  

Creating and using instances

● Creating an instance is like ”calling” a class -- 
parenthesis.

● Instances are mutable.
● Instances can be shared.
● Instances are first-class objects (classes, too).



  

Instance (and class) variables

● What are instance variables?
● What are class variables?
● Initialization – Create instance variables in the 

constructor: __init__().



  

Kinds of methods

● Instance methods
● Class methods
● Static methods



  

Defining methods

● A method is a function in a class.
● ”self”
● Calling methods in this class or superclass
● Calling methods in a super-class and bypassing 

the same method in this class



  

Inheritance and polymorphism

● Implementing inheritance
● How inheritance works – (1) Conceptual view; 

(2) mechanical view.
● Implementing and using inheritance.
● Polymorphism – (1) Other views of 

polymorphism;  (2) the ”Pythonic” view.
● Implementing and using polymorphism.
● Interfaces and ”duck typing” – Polymorphism 

not strictly tied to inheritance.



  

Introducing modules

● Introduction – You likely already know each 
other.

● Why we need modules – structure.
● Modules enable us to group related 

programming objects: functions, classes, 
variables/names.

● Modules are the next highest structural artifact 
above functions and classes.

● Import creates module objects, only once.



  

Defining modules

● A module is a .py file.
● Dual use – Both import and run a module.
● What to put in a module: variables, functions, 

classes, run/test harness, other statements.
● Doc-string – Triple quoted string at top of 

module.



  

Using modules

● import – Evaluates a .py file and creates a 
module object containing other objects: names 
bound to objects, function definitions, class 
definitions, etc.

● Reference objects in a module using standard 
dot notation.  Or, use from x import y.

● When imported, a module executes only once.  
Module objects are shared.
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