

Course outline for Python training

Programming in Python
Dave Kuhlman

Intro, admin, etc

● Introductions
● Administration and other practical matters
● Course agenda, contents, purpose, and goals
● Machine set-up and materials

Python (and other languages)

● Python
● Comparisons with other languages
● Connections to other languages
● Versions of Python
● Why Python? Also, when and why not Python.

Course Preview

● Lexical matters
● Built-in data types – numbers, strings, lists,

dictionaries, files, etc.
● Statements – assignment, if:, for:, while:, etc
● Functions
● Classes and objects
● Other topics: list comprehensions, iterators,

standard modules, etc
● And, ”practical” exercises everywhere

Lexical Matters

● Names
● Scope
● Keywords and operators
● Line structure
● Comments
● Statement structure
● Blocks and indentation
● Special names

Built-in datatypes

● Numbers
● Strings
● Lists and tuples
● Dictionaries
● Files
● None, booleans, sets, functions, methods,

classes, modules, type objects, etc.

Objects and data types

● Mutability and immutability
● Objects have attributes. Some attributes are

methods.
● Use type(obj) and dir(obj)
● References and sharing. Use id() and the is

operator to check identity.

Numbers

● Integers
● Longs (really long)
● Floats
● Complex/imaginary
● Literal representations
● Operators
● Mixed arithmetic

Strings

● What are strings? A string is an immutable
ordered sequence of characters.

● String literals – single quotes, double quotes,
and triple quoting

● String operators
● String methods
● String Formatting

Lists and tuples

● Lists and tuples are sequences – ordered
collections.

● Lists vs. tuples – mutable and immutable
● Literal representation of lists and tuples
● Operators
● Methods

Dictionaries

● What are dictionaries? – An unordered
collection of key-value pairs. A mapping from
keys to values.

● Literal representation of dictionaries
● Operators for dictionaries
● Methods for dictionaries

Container summary

● Strings – ordered, characters, immutable

● Tuples – ordered, heterogeneous, immutable

● Lists – ordered, heterogeneous, mutable

● Dictionary – unordered, key/values, mutable

● Set – unordered, heterogeneous, mutable, unique
values

Files

● What is a file object? A file object represents a
file on the file system. There are other file-like
objects.

● Creating a file object – open() – name/path,
mode (read, write, append)

● Using a file object – File methods: read,
readlines, write, seek, etc.

● Iterating over the lines in a text file.

A few other data types

● The null type – None
● Boolean values – True and False
● Sets
● Functions and methods
● Classes and instances of classes
● Modules
● Additional builtin and defined types in the

Python standard library

Introduction to Statements

● Statements are executed.
● Statements do not return a value.
● Compound statements have a header and

contain one or more blocks.

Statements

● Simple statements -- assignment, print, import,
break, continue, raise, ...

● Compound statements – if:, for:, while:, try:,
with:, ...

Functions: Introduction

● Introduction to functions
● Why functions – task abstraction; application

organization/structure.
● Execution model for functions
● Functions are first-class objects

Function definition

● Function block header
● Parameters – plain
● Parameters – default values
● Parameters – arg lists and keyword arguments

(*args, **kwargs)
● Returning values from a function
● Scope – Bindings within a function. Also, the

global statement.

Using/calling functions

● Passing arguments – plain
● Passing arguments – keyword
● Using function return values
● Functions by name, functions by variable,

functions in data structures
● Unpacking return values
● Unrolling collections in a function call

Object-oriented programming

● Why OOP? -- object abstraction; modeling
objects in the real world; reuse.

● Organization – classes are another way to
structure and organize your code.

● Encapsulation
● Data(and method) hiding
● Inheritance
● Polymorphism – duck typing

Defining classes

● Class block header: name and superclass
● Adding methods
● The constructor: __init__
● Creating instance/member variables
● Class data members
● Class methods
● Properties

Creating and using instances

● Creating an instance is like ”calling” a class --
parenthesis.

● Instances are mutable.
● Instances can be shared.
● Instances are first-class objects (classes, too).

Instance (and class) variables

● What are instance variables?
● What are class variables?
● Initialization – Create instance variables in the

constructor: __init__().

Kinds of methods

● Instance methods
● Class methods
● Static methods

Defining methods

● A method is a function in a class.
● ”self”
● Calling methods in this class or superclass
● Calling methods in a super-class and bypassing

the same method in this class

Inheritance and polymorphism

● Implementing inheritance
● How inheritance works – (1) Conceptual view;

(2) mechanical view.
● Implementing and using inheritance.
● Polymorphism – (1) Other views of

polymorphism; (2) the ”Pythonic” view.
● Implementing and using polymorphism.
● Interfaces and ”duck typing” – Polymorphism

not strictly tied to inheritance.

Introducing modules

● Introduction – You likely already know each
other.

● Why we need modules – structure.
● Modules enable us to group related

programming objects: functions, classes,
variables/names.

● Modules are the next highest structural artifact
above functions and classes.

● Import creates module objects, only once.

Defining modules

● A module is a .py file.
● Dual use – Both import and run a module.
● What to put in a module: variables, functions,

classes, run/test harness, other statements.
● Doc-string – Triple quoted string at top of

module.

Using modules

● import – Evaluates a .py file and creates a
module object containing other objects: names
bound to objects, function definitions, class
definitions, etc.

● Reference objects in a module using standard
dot notation. Or, use from x import y.

● When imported, a module executes only once.
Module objects are shared.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

